3.2973 \(\int \frac{(2+3 x)^{5/2}}{(1-2 x)^{5/2} \sqrt{3+5 x}} \, dx\)

Optimal. Leaf size=125 \[ -\frac{67 \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )}{55 \sqrt{33}}+\frac{7 \sqrt{5 x+3} (3 x+2)^{3/2}}{33 (1-2 x)^{3/2}}-\frac{448 \sqrt{5 x+3} \sqrt{3 x+2}}{363 \sqrt{1-2 x}}-\frac{4451 E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{110 \sqrt{33}} \]

[Out]

(-448*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/(363*Sqrt[1 - 2*x]) + (7*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/(33*(1 - 2*x)^(3/2)
) - (4451*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(110*Sqrt[33]) - (67*EllipticF[ArcSin[Sqrt[3/7]*S
qrt[1 - 2*x]], 35/33])/(55*Sqrt[33])

________________________________________________________________________________________

Rubi [A]  time = 0.0370856, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {98, 150, 158, 113, 119} \[ \frac{7 \sqrt{5 x+3} (3 x+2)^{3/2}}{33 (1-2 x)^{3/2}}-\frac{448 \sqrt{5 x+3} \sqrt{3 x+2}}{363 \sqrt{1-2 x}}-\frac{67 F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{55 \sqrt{33}}-\frac{4451 E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{110 \sqrt{33}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)^(5/2)/((1 - 2*x)^(5/2)*Sqrt[3 + 5*x]),x]

[Out]

(-448*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/(363*Sqrt[1 - 2*x]) + (7*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/(33*(1 - 2*x)^(3/2)
) - (4451*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(110*Sqrt[33]) - (67*EllipticF[ArcSin[Sqrt[3/7]*S
qrt[1 - 2*x]], 35/33])/(55*Sqrt[33])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 150

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{(2+3 x)^{5/2}}{(1-2 x)^{5/2} \sqrt{3+5 x}} \, dx &=\frac{7 (2+3 x)^{3/2} \sqrt{3+5 x}}{33 (1-2 x)^{3/2}}-\frac{1}{33} \int \frac{\sqrt{2+3 x} \left (\frac{247}{2}+201 x\right )}{(1-2 x)^{3/2} \sqrt{3+5 x}} \, dx\\ &=-\frac{448 \sqrt{2+3 x} \sqrt{3+5 x}}{363 \sqrt{1-2 x}}+\frac{7 (2+3 x)^{3/2} \sqrt{3+5 x}}{33 (1-2 x)^{3/2}}-\frac{1}{363} \int \frac{-4227-\frac{13353 x}{2}}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{448 \sqrt{2+3 x} \sqrt{3+5 x}}{363 \sqrt{1-2 x}}+\frac{7 (2+3 x)^{3/2} \sqrt{3+5 x}}{33 (1-2 x)^{3/2}}+\frac{67}{110} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx+\frac{4451 \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx}{1210}\\ &=-\frac{448 \sqrt{2+3 x} \sqrt{3+5 x}}{363 \sqrt{1-2 x}}+\frac{7 (2+3 x)^{3/2} \sqrt{3+5 x}}{33 (1-2 x)^{3/2}}-\frac{4451 E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{110 \sqrt{33}}-\frac{67 F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{55 \sqrt{33}}\\ \end{align*}

Mathematica [A]  time = 0.249573, size = 120, normalized size = 0.96 \[ -\frac{2240 \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{11-5 (1-2 x)}}{\sqrt{11}}\right ),-\frac{33}{2}\right )-4451 E\left (\sin ^{-1}\left (\frac{\sqrt{11-5 (1-2 x)}}{\sqrt{11}}\right )|-\frac{33}{2}\right )}{1815 \sqrt{2}}-\frac{1}{2} \sqrt{11-5 (1-2 x)} \sqrt{7-3 (1-2 x)} \left (\frac{1127}{726 \sqrt{1-2 x}}-\frac{49}{66 (1-2 x)^{3/2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)^(5/2)/((1 - 2*x)^(5/2)*Sqrt[3 + 5*x]),x]

[Out]

-((-49/(66*(1 - 2*x)^(3/2)) + 1127/(726*Sqrt[1 - 2*x]))*Sqrt[11 - 5*(1 - 2*x)]*Sqrt[7 - 3*(1 - 2*x)])/2 - (-44
51*EllipticE[ArcSin[Sqrt[11 - 5*(1 - 2*x)]/Sqrt[11]], -33/2] + 2240*EllipticF[ArcSin[Sqrt[11 - 5*(1 - 2*x)]/Sq
rt[11]], -33/2])/(1815*Sqrt[2])

________________________________________________________________________________________

Maple [C]  time = 0.021, size = 228, normalized size = 1.8 \begin{align*}{\frac{1}{3630\, \left ( 2\,x-1 \right ) ^{2} \left ( 15\,{x}^{2}+19\,x+6 \right ) } \left ( 4480\,\sqrt{2}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-8902\,\sqrt{2}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-2240\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +4451\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +169050\,{x}^{3}+170030\,{x}^{2}+11760\,x-17640 \right ) \sqrt{3+5\,x}\sqrt{1-2\,x}\sqrt{2+3\,x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^(5/2)/(1-2*x)^(5/2)/(3+5*x)^(1/2),x)

[Out]

1/3630*(4480*2^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/
2)-8902*2^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)-22
40*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))+4451*2^(1
/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))+169050*x^3+17003
0*x^2+11760*x-17640)*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(2+3*x)^(1/2)/(2*x-1)^2/(15*x^2+19*x+6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (3 \, x + 2\right )}^{\frac{5}{2}}}{\sqrt{5 \, x + 3}{\left (-2 \, x + 1\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)/(1-2*x)^(5/2)/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((3*x + 2)^(5/2)/(sqrt(5*x + 3)*(-2*x + 1)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (9 \, x^{2} + 12 \, x + 4\right )} \sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{40 \, x^{4} - 36 \, x^{3} - 6 \, x^{2} + 13 \, x - 3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)/(1-2*x)^(5/2)/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-(9*x^2 + 12*x + 4)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(40*x^4 - 36*x^3 - 6*x^2 + 13*x - 3),
x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**(5/2)/(1-2*x)**(5/2)/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (3 \, x + 2\right )}^{\frac{5}{2}}}{\sqrt{5 \, x + 3}{\left (-2 \, x + 1\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)/(1-2*x)^(5/2)/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

integrate((3*x + 2)^(5/2)/(sqrt(5*x + 3)*(-2*x + 1)^(5/2)), x)